22 research outputs found

    A gradual process of recombination restriction in the evolutionary history of the sex chromosomes in dioecious plants.

    Get PDF
    To help understand the evolution of suppressed recombination between sex chromosomes, and its consequences for evolution of the sequences of Y-linked genes, we have studied four X-Y gene pairs, including one gene not previously characterized, in plants in a group of closely related dioecious species of Silene which have an X-Y sex-determining system (S. latifolia, S. dioica, and S. diclinis). We used the X-linked copies to build a genetic map of the X chromosomes, with a marker in the pseudoautosomal region (PAR) to orient the map. The map covers a large part of the X chromosomes--at least 50 centimorgans. Except for a recent rearrangement in S. dioica, the gene order is the same in the X chromosomes of all three species. Silent site divergence between the DNA sequences of the X and Y copies of the different genes increases with the genes' distances from the PAR, suggesting progressive restriction of recombination between the X and Y chromosomes. This was confirmed by phylogenetic analyses of the four genes, which also revealed that the least-diverged X-Y pair could have ceased recombining independently in the dioecious species after their split. Analysis of amino acid replacements vs. synonymous changes showed that, with one possible exception, the Y-linked copies appear to be functional in all three species, but there are nevertheless some signs of degenerative processes affecting the genes that have been Y-linked for the longest times. Although the X-Y system evolved quite recently in Silene (less than 10 million years ago) compared to mammals (about 320 million years ago), our results suggest that similar processes have been at work in the evolution of sex chromosomes in plants and mammals, and shed some light on the molecular mechanisms suppressing recombination between X and Y chromosomes

    Low variability in a Y-linked plant gene and its implications for Y-chromosome evolution.

    No full text
    Sex chromosomes have evolved independently in several different groups of organisms, but they share common features, including genetic degeneration of the Y chromosome. Suppression of recombination between ancestral proto-X and proto-Y chromosomes is thought to have led to their gradual divergence, and to degeneration of the Y chromosome, but the evolutionary forces responsible are unknown. In non-recombining Y chromosomes, deleterious mutations may be carried to fixation by linked advantageous mutations ("selective sweeps"). Occurrence of deleterious mutations may drive "Muller's ratchet" (stochastic loss of chromosomes with the fewest mutations). Selective elimination of deleterious mutations, causing "background selection" may accelerate stochastic fixation of mildly detrimental mutations. All these processes lower effective population sizes, and therefore reduce variability of genes in evolving Y chromosomes. We have studied DNA diversity and divergence in a recently described X- and Y-linked gene pair (SLX-1 and SLY-1) of the plant Silene latifolia to obtain evidence about the early stages of Y degeneration. Here we show that DNA polymorphism in SLY-1 is 20-fold lower than in SLX-1, but the pattern of polymorphism does not suggest a selective sweep

    Cell-specific regulation of gene expression in mitochondria during anther development in sunflower.

    No full text
    Mitochondrial gene expression was characterized during meiosis in sunflower anthers. In situ hybridization experiments showed that there was a marked accumulation of four mitochondrial gene transcripts (atpA, atp9, cob, and rrn26) in young meiotic cells. This pattern of transcript accumulation was only detected for mitochondrial genes and not for transcripts of two nuclear genes (atpB and ANT) encoding mitochondrial proteins or another nuclear gene transcript (25S rRNA). Immunolocalization studies showed that the pattern of accumulation of the protein product of the atpA gene, the F1-ATP synthase alpha subunit, reflects that of the transcript. The expression of the novel mitochondrial orf522, which is associated with the cytoplasmic male-sterile (CMS) phenotype, was also studied by in situ hybridization. The orf522 transcripts were reduced in abundance in meiotic cells in the presence of fertility restorer genes. These results suggest that mitochondrial gene expression is regulated in a cell-specific fashion in developing anthers and that the restorer gene(s) may act cell specifically

    Premature arrest of the male flower meristem precedes sexual dimorphism in the dioecious plant Silene latifolia.

    No full text
    Most dioecious plant species are believed to derive from hermaphrodite ancestors. The regulatory pathways that have been modified during evolution of the hermaphrodite ancestors and led to the emergence of dioecious species still remain unknown. Silene latifolia is a dioecious plant species harboring XY sex chromosomes. To identify the molecular mechanisms involved in female organ suppression in male flowers of S. latifolia, we looked for genes potentially involved in the establishment of floral organ and whorl boundaries. We identified homologs of Arabidopsis thaliana SHOOTMERISTEMLESS (STM) and CUP SHAPED COTYLEDON (CUC) 1 and CUC2 genes in S. latifolia. Our phylogenetic analyses suggest that we identified true orthologs for both types of genes. Detailed expression analyses showed a conserved expression pattern for these genes between S. latifolia and A. thaliana, suggesting a conserved function of the corresponding proteins. Comparative in situ hybridization experiments between male, female, and hermaphrodite individuals reveal that these genes show a male-specific pattern of expression before any morphological difference become apparent. Our results make SlSTM and SlCUC strong candidates for being involved in sex determination in S. latifolia

    The Law of the European Union

    No full text
    The Law of the European Union, Second Edition, has been consolidated from the two volumes of the first edition to form a single, updated volume. This casebook examines the law of the European Union under the Lisbon Treaty, which came into effect in December 2009. Part I of the book covers Historical Developments (from the EEC to the EU); Founding Values and Constitutional Principles; Institutions and Law Making Procedures; Sources of Law; Court Structure; European Union Law and National Legal Orders; Preliminary Rulings; Judicial Review; Enforcement: Actions against States; Liability of the EU and States; Justice and Fundamental Rights; and External Relations-Foreign Policy and Security. Part II covers Single/Common Market; Circulation of Goods; Movement of Persons; Workers; Establishment and Services; Movement of Capital; External Commercial Policy; Competition; Mergers; State Aids; Intellectual Property; and The Euro and Consumer Protection.https://digitalcommons.law.lsu.edu/books/1045/thumbnail.jp

    Analysis and evolution of two functional Y-linked loci in a plant sex chromosome system.

    No full text
    White campion (Silene latifolia) is one of the few examples of plants with separate sexes and with X and Y sex chromosomes. The presence or absence of the Y chromosome determines which type of reproductive organs--male or female--will develop. Recently, we characterized the first active gene located on a plant Y chromosome, SlY1, and its X-linked homolog, SlX1. These genes encode WD-repeat proteins likely to be involved in cell proliferation. Here, we report the characterization of a novel Y-linked gene, SlY4, which also has a homolog on the X chromosome, SlX4. Both SlY4 and SlX4 potentially encode fructose-2,6-bisphosphatases. A comparative molecular analysis of the two sex-linked loci (SlY1/SlX1 and SlY4/SlX4) suggests selective constraint on both X- and Y-linked genes and thus that both X- and Y-linked copies are functional. Divergence between SlY4 and SlX4 is much greater than that between the SlY1 and SlX1 genes. These results suggest that, as for human XY-linked genes, the sex-linked plant loci ceased recombining at different times and reveal distinct events in the evolutionary history of the sex chromosomes

    SlY1, the first active gene cloned from a plant Y chromosome, encodes a WD-repeat protein.

    No full text
    Unlike the majority of flowering plants, which possess hermaphrodite flowers, white campion (Silene latifolia) is dioecious and has flowers of two different sexes. The sex is determined by the combination of heteromorphic sex chromosomes: XX in females and XY in males. The Y chromosome of S.latifolia was microdissected to generate a Y-specific probe which was used to screen a young male flower cDNA library. We identified five genes which represent the first active genes to be cloned from a plant Y chromosome. Here we report a detailed analysis of one of these genes, SlY1 (S.latifolia Y-gene 1). SlY1 is expressed predominantly in male flowers. A closely related gene, SlX1, is predicted to be located on the X chromosome and is strongly expressed in both male and female flowers. SlY1 and SlX1 encode almost identical proteins containing WD repeats. Immunolocalization experiments showed that these proteins are localized in the nucleus, and that they are most abundant in cells that are actively dividing or beginning to differentiate. Interestingly, they do not accumulate in arrested sexual organs and represent potential targets for sex determination genes. These genes will permit investigation of the origin and evolution of sex chromosomes in plants

    A Light-Regulated Genetic Module Was Recruited to Carpel Development in Arabidopsis following a Structural Change to SPATULA

    No full text
    A key innovation of flowering plants is the female reproductive organ, the carpel. Here, we show that a mechanism that regulates carpel margin development in the model flowering plant Arabidopsis thaliana was recruited from light-regulated processes. This recruitment followed the loss from the basic helix-loop-helix transcription factor SPATULA (SPT) of a domain previously responsible for its negative regulation by phytochrome. We propose that the loss of this domain was a prerequisite for the light-independent expression in female reproductive tissues of a genetic module that also promotes shade avoidance responses in vegetative organs. Striking evidence for this proposition is provided by the restoration of wild-type carpel development to spt mutants by low red/far-red light ratios, simulating vegetation shade, which we show to occur via phytochrome B, PHYTOCHROME INTERACTING FACTOR4 (PIF4), and PIF5. Our data illustrate the potential of modular evolutionary events to generate rapid morphological change and thereby provide a molecular basis for neo-Darwinian theories that describe this nongradualist phenomenon. Furthermore, the effects shown here of light quality perception on carpel development lead us to speculate on the potential role of light-regulated mechanisms in plant organs that, like the carpel, form within the shade of surrounding tissues
    corecore